[HNOI2011]数学作业
[HNOI2011]数学作业。
直接考虑 $\tt Dp$ 显然 $f_i = f_{i - 1} \times 10^{x} + i$。那么我们直接将其分段进行计算即可。
具体的矩阵:
$$
\left[
\begin{matrix}
1 & i & f_i
\end{matrix}
\right]
$$
$$
\left[
\begin{matrix}
1 & 1 & 0 \
0 & 1 & 1 \
0 & 0 & 10^x
\end{matrix}
\right]
$$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
| #include <bits/stdc++.h> using namespace std;
#ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif
template <typename T> void r1(T &x) { x = 0; char c(getchar()); int f(1); for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); x *= f; }
template <typename T,typename... Args> inline void r1(T& t, Args&... args) { r1(t); r1(args...); }
const int maxn = 2e5 + 5; const int maxm = maxn << 1; typedef long long ll; ll mod, n;
struct Matrix { int a[3][3]; Matrix(void) { memset(a, 0, sizeof(a)); } Matrix operator * (const Matrix &z) const { Matrix res; for(int i = 0; i < 3; ++ i) { for(int j = 0; j < 3; ++ j) { for(int k = 0; k < 3; ++ k) { res.a[i][j] = (res.a[i][j] + 1ll * a[i][k] * z.a[k][j] % mod) % mod; } } } return res; } void print() { for(int i = 0; i < 3; ++ i) { for(int j = 0; j < 3; ++ j) printf("(%d, %d) = %d\n", i, j, a[i][j]); puts(""); } } }tmp, F; ll pw[20];
void ksm(Matrix &res, Matrix tmp,ll mi) {
while(mi) { if(mi & 1) res = res * tmp; mi >>= 1; tmp = tmp * tmp; } }
signed main() {
int i, j; pw[0] = 1; for(i = 1; i <= 18; ++ i) pw[i] = pw[i - 1] * 10; r1(n, mod);
F.a[0][0] = 1, F.a[0][1] = 1, F.a[0][2] = 0;
tmp.a[0][0] = 1; tmp.a[0][1] = tmp.a[1][1] = 1; tmp.a[1][2] = 1;
for(i = 1; i <= 18; ++ i) { tmp.a[2][2] = pw[i] % mod;
if(pw[i] - 1 >= n) {
ksm(F, tmp, n - pw[i - 1] + 1); break; } else { ksm(F, tmp, pw[i] - pw[i - 1]); } }
printf("%d\n", F.a[0][2]); return 0; }
|