CF1182E Product Oriented Recurrence

CF1182E Product Oriented Recurrence

看到这个 $n$ 很大就会直接考虑矩阵乘法。

我们直接把指数拿下来即可,分成两部分进行计算。

对于 $c$ 的部分有这样的矩阵:
$$
\left[
\begin{matrix}
c_1 & c_2 & c_3 & 2n - 6 & 2
\end{matrix}
\right]
\times \left[
\begin{matrix}
0 & 0 & 1 & 0 & 0 \
1 & 0 & 1 & 0 & 0\
0 & 1 & 1 & 0 & 0 \
0 & 0 & 1 & 1 & 0 \
0 & 0 & 0 & 1 & 1
\end{matrix}
\right]
$$
然后我们考虑每个数肯定是可以表示成 $c^xf_1^yf_2^zf_3^{\lambda}$ 这样的形式,我们对于后面的系数也有递推式,我们直接分开计算即可。

$f$ 的递推矩阵:
$$
\left[
\begin{matrix}
c_1 & c_2 & c_3
\end{matrix}
\right]
\times
\left[
\begin{matrix}
0 & 0 & 1 \
1 & 0 & 1 \
0 & 1 & 1
\end{matrix}
\right]
$$
别忘记了欧拉定理对于指数的取模是 $\varphi(mod)$。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include <bits/stdc++.h>
using namespace std;

//#define Fread
#define Getmod

#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread

template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
x *= f;
}

template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
r1(t); r1(args...);
}

#ifdef Getmod
const int mod = 1e9 + 6;
template <int mod>
struct typemod {
int z;
typemod(int a = 0) : z(a) {}
inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}
inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}
inline int mul(int a,int b) const {return 1ll * a * b % mod;}
typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}
typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}
typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}
typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}
typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}
typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}
int operator == (const typemod<mod> &x) const {return x.z == z;}
int operator != (const typemod<mod> &x) const {return x.z != z;}
};
typedef typemod<mod> Tm;
#endif

//#define int long long
const int maxn = 2e5 + 5;
const int maxm = maxn << 1;

int ksm(int x,long long mi,int mod) {
int res(1);
while(mi) {
if(mi & 1) res = 1ll * res * x % mod;
mi >>= 1;
x = 1ll * x * x % mod;
}
return res;
}

struct Matrix {
Tm a[5][5];
Matrix(void) {
for(int i = 0; i < 5; ++ i) for(int j = 0; j < 5; ++ j)
a[i][j] = 0;
}
void init() {
for(int i = 0; i < 5; ++ i) a[i][i] = 1;
}
Matrix operator * (const Matrix &z) const {
Matrix res;
for(int i = 0; i < 5; ++ i) {
for(int j = 0; j < 5; ++ j) {
for(int k = 0; k < 5; ++ k) {
res.a[i][j] += a[i][k] * z.a[k][j];
}
}
}
return res;
}
}F, tmpf, c, tmpc;

long long n;
int sc;

void ksm(Matrix &a, Matrix tmp,long long mi) {
while(mi) {
if(mi & 1) a = a * tmp;
mi >>= 1;
tmp = tmp * tmp;
}
}

int Solve(int pos, int c) {
for(int i = 0; i < 3; ++ i) if(i == pos) F.a[0][i] = 1; else F.a[0][i] = 0;
ksm(F, tmpf, n - 3);
return ksm(c, F.a[0][2].z, mod + 1);
}

int f[4];

signed main() {
// freopen("S.in", "r", stdin);
// freopen("S.out", "w", stdout);
int i, j;
r1(n, f[0], f[1], f[2], sc);
tmpf.a[1][0] = 1;
tmpf.a[2][1] = 1;
tmpf.a[0][2] = tmpf.a[1][2] = tmpf.a[2][2] = 1;
c.a[0][3] = c.a[0][4] = 2;

tmpc.a[1][0] = 1;
tmpc.a[2][1] = 1;
tmpc.a[0][2] = tmpc.a[1][2] = tmpc.a[2][2] = tmpc.a[3][2] = 1;
tmpc.a[3][3] = tmpc.a[4][3] = 1;
tmpc.a[4][4] = 1;
ksm(c, tmpc, n - 3);
// printf("tn = %d\n", c.a[0][3]);

int res(1);
res = 1ll * res * ksm(sc, c.a[0][2].z, mod + 1);
for(i = 0; i < 3; ++ i) res = 1ll * res * Solve(i, f[i]) % (mod + 1);
printf("%d\n", res);
return 0;
}