题目大意:
给定一个 $n, p$ 求 $\binom{n}{0 \dots n}$ 有多少数不能被 $p$ 整除。
我们考虑 $Lucas$ 定理。
$\binom{n}{m} = \binom{n / p}{m/ p} \times \binom{n \mod p}{m \mod p}$。
也就是将 $n$ 分解成 $p$ 进制。如果上面的大于下面的就是有值的。
所以直接进行分解之后乘法原理即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
| #include <iostream> #include <cstdio> using namespace std;
#ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #endif
template <typename T> void r1(T &x) { x = 0; char c(getchar()); int f(1); for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); x *= f; }
#ifdef Getmod const int mod = 1e9 + 7; template <int mod> struct typemod { int z; typemod(int a = 0) : z(a) {} inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);} inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);} inline int mul(int a,int b) const {return 1ll * a * b % mod;} typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));} typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));} typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));} typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;} typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;} typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;} int operator == (const typemod<mod> &x) const {return x.z == z;} int operator != (const typemod<mod> &x) const {return x.z != z;} }; typedef typemod<mod> Tm; #endif
#define int long long const int maxn = 2e5 + 5; const int maxm = maxn << 1; const int mod = 1e4;
int p, n; int Work() { int sum(1); while(n) { int tmp = n % p; n /= p; ++ tmp; sum = sum * tmp % mod; } return sum; }
signed main() {
int i, j, Case(0); while(scanf("%lld%lld", &p, &n) != EOF) { if(p == 0 && n == 0) return 0; ++ Case; printf("Case %lld: %04lld\n", Case, Work()); } return 0; }
|