P3758 [TJOI2017]可乐
首先考虑一个 $Dp$。会想到 $f(t, i, j)$ 表示在时刻 $t$ 走到位置 $(i, j)$ 的方案数。但是因为我们是从 $1$ 开始走。那么完全可以设 $f(t, i)$ 表示从 $1 \to i$ 在时刻 $t$ 的方案数。转移的话就枚举之后可以走到的位置进行转移。
然后处理一下爆炸的情况,可以建立一个新的节点,之后进行转移,然后每个点只能进入不能出来。
我们发现本质上我们的 $t$ 意味着死亡时间最晚是 $t$ 所以之前的状态需要继承。然后要对于新建的节点再来一个自环,进行转移。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
| #include <bits/stdc++.h> using namespace std;
#define Fread #define Getmod
#ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif
template <typename T> void r1(T &x) { x = 0; char c(getchar()); int f(1); for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); x *= f; }
#ifdef Getmod const int mod = 2017; template <int mod> struct typemod { int z; typemod(int a = 0) : z(a) {} inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);} inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);} inline int mul(int a,int b) const {return 1ll * a * b % mod;} typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));} typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));} typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));} typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;} typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;} typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;} int operator == (const typemod<mod> &x) const {return x.z == z;} int operator != (const typemod<mod> &x) const {return x.z != z;} }; typedef typemod<mod> Tm; #endif
template <typename T,typename... Args> inline void r1(T& t, Args&... args) { r1(t); r1(args...); }
const int maxn = 30 + 5; const int maxm = 1e6 + 5;
int head[maxn], cnt; struct Edge { int to, next; }edg[(int)1e5]; inline void add(const int &u, const int &v) { edg[++ cnt] = (Edge) {v, head[u]}, head[u] = cnt; }
int n, m; Tm f[2][maxn];
signed main() {
int i, j; r1(n, m); for(i = 1; i <= m; ++ i) { int u, v; r1(u, v); add(u, v), add(v, u); } for(i = 1; i <= n; ++ i) add(i, i), add(i, n + 1); add(n + 1, n + 1); int t; r1(t); f[0][1] = 1; for(i = 1; i <= t; ++ i) { int now(i & 1), bef(now ^ 1); for(j = 1; j <= n + 1; ++ j) f[now][j] = 0; for(j = 1; j <= n + 1; ++ j) { for(int k = head[j];k;k = edg[k].next) { int to = edg[k].to; f[now][to] += f[bef][j]; } } } Tm ans(0); for(i = 1; i <= n + 1; ++ i) ans += f[t & 1][i]; printf("%d\n", ans.z); return 0; }
|
当然以上只是卡常可以过去,我们对其建立一个转移矩阵即可。
然后我们考虑对于一个邻接矩阵的 $k$ 次,意味这什么呢?本质上就是进行了 $k$ 次 $floyd$ 更新。也就是说矩阵 $(i, j)$ 就是表示之前说的信息。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
| #include <bits/stdc++.h> using namespace std;
#ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif
template <typename T> void r1(T &x) { x = 0; char c(getchar()); int f(1); for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); x *= f; }
#ifdef Getmod const int mod = 1e9 + 7; template <int mod> struct typemod { int z; typemod(int a = 0) : z(a) {} inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);} inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);} inline int mul(int a,int b) const {return 1ll * a * b % mod;} typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));} typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));} typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));} typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;} typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;} typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;} int operator == (const typemod<mod> &x) const {return x.z == z;} int operator != (const typemod<mod> &x) const {return x.z != z;} }; typedef typemod<mod> Tm; #endif
template <typename T,typename... Args> inline void r1(T& t, Args&... args) { r1(t); r1(args...); }
const int maxn = 30 + 5; const int maxm = maxn << 1;
int n, m; struct Matrix { int a[maxn][maxn]; Matrix(void) {memset(a, 0, sizeof(a));} Matrix operator * (const Matrix &z) const { Matrix res; for(int i = 0; i <= n; ++ i) { for(int j = 0; j <= n; ++ j) { for(int k = 0; k <= n; ++ k) { res.a[i][j] = (res.a[i][j] + a[i][k] * z.a[k][j] % 2017) % 2017; } } } return res; } }vc;
Matrix ksm(Matrix &z, int mi) { Matrix res; for(int i = 0; i <= n; ++ i) res.a[i][i] = 1; while(mi) { if(mi & 1) res = res * z; mi >>= 1; z = z * z; }
return res; }
signed main() {
int i, j; r1(n, m); for(i = 1; i <= m; ++ i) { int u, v; r1(u, v); vc.a[u][v] = vc.a[v][u] = 1; } for(i = 0; i <= n; ++ i) vc.a[i][0] = 1; for(i = 0; i <= n; ++ i) vc.a[i][i] = 1; int t; r1(t); Matrix res = ksm(vc, t); int ans(0); for(i = 0; i <= n; ++ i) ans = (ans + res.a[1][i]) % 2017; printf("%d\n", ans); return 0; }
|